03Env&Source
本文最后更新于 2022-08-28 11:30:56
Environment&Source
Envrionment
getExecutionEnvironment
创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
//并行度默认为flink-conf.yaml中的配置
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val env = StreamExecutionEnvironment.getExecutionEnvironmentcreateLocalEnvironment
返回本地执行环境,需要在调用时指定默认的并行度。
val env = StreamExecutionEnvironment.createLocalEnvironment(1)createRemoteEnvironment
返回集群执行环境,将Jar提交到远程服务器。需要在调用时指定JobManager的IP和端口号,并指定要在集群中运行的Jar包
val env = ExecutionEnvironment.createRemoteEnvironment("jobmanage-hostname", 6123,"YOURPATH//wordcount.jar")Source
从集合
// 定义样例类,传感器id,时间戳,温度
case class SensorReading(id: String, timestamp: Long, temperature: Double)
object Sensor {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
val stream1 = env
.fromCollection(List(
SensorReading("sensor_1", 1547718199, 35.8),
SensorReading("sensor_6", 1547718201, 15.4),
SensorReading("sensor_7", 1547718202, 6.7),
SensorReading("sensor_10", 1547718205, 38.1)
))
stream1.print("stream1:").setParallelism(1)
env.execute()
}
}从文件
val stream2 = env.readTextFile("YOUR_FILE_PATH")Kafka
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>1.10.0</version>
</dependency>
<!---0.11 ->kafka版本-->
<!---2.11 ->scala版本-->
val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")
val stream3 = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))
自定义source
val stream4 = env.addSource( new MySensorSource() )
class MySensorSource extends SourceFunction[SensorReading]{
// flag: 表示数据源是否还在正常运行
var running: Boolean = true
override def cancel(): Unit = {
running = false
}
override def run(ctx: SourceFunction.SourceContext[SensorReading]): Unit = {
// 初始化一个随机数发生器
val rand = new Random()
var curTemp = 1.to(10).map(
//高斯随机
i => ( "sensor_" + i, 65 + rand.nextGaussian() * 20 )
)
while(running){
// 更新温度值
curTemp = curTemp.map(
t => (t._1, t._2 + rand.nextGaussian() )
)
// 获取当前时间戳
val curTime = System.currentTimeMillis()
curTemp.foreach(
//采集数据
t => ctx.collect(SensorReading(t._1, curTime, t._2))
)
Thread.sleep(100)
}
}
}
03Env&Source
https://jiajun.xyz/2021/07/27/bigdata/11Flink/01flink_study1/03Env&Source/